143 research outputs found

    Unsupervised Domain Adaptation on Reading Comprehension

    Full text link
    Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate this issue, we are going to investigate unsupervised domain adaptation on RC, wherein a model is trained on labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, the performance is still unsatisfactory when the model trained on one dataset is directly applied to another target dataset. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable accuracy to supervised models on multiple large-scale benchmark datasets.Comment: 8 pages, 6 figures, 5 tables, Accepted by AAAI 202

    Collect-and-Distribute Transformer for 3D Point Cloud Analysis

    Full text link
    Although remarkable advancements have been made recently in point cloud analysis through the exploration of transformer architecture, it remains challenging to effectively learn local and global structures within point clouds. In this paper, we propose a new transformer architecture equipped with a collect-and-distribute mechanism to communicate short- and long-range contexts of point clouds, which we refer to as CDFormer. Specifically, we first utilize self-attention to capture short-range interactions within each local patch, and the updated local features are then collected into a set of proxy reference points from which we can extract long-range contexts. Afterward, we distribute the learned long-range contexts back to local points via cross-attention. To address the position clues for short- and long-range contexts, we also introduce context-aware position encoding to facilitate position-aware communications between points. We perform experiments on four popular point cloud datasets, namely ModelNet40, ScanObjectNN, S3DIS, and ShapeNetPart, for classification and segmentation. Results show the effectiveness of the proposed CDFormer, delivering several new state-of-the-art performances on point cloud classification and segmentation tasks. The code is available at \url{https://github.com/haibo-qiu/CDFormer}.Comment: Code is available at https://github.com/haibo-qiu/CDForme

    Discovering Human-Object Interaction Concepts via Self-Compositional Learning

    Full text link
    A comprehensive understanding of human-object interaction (HOI) requires detecting not only a small portion of predefined HOI concepts (or categories) but also other reasonable HOI concepts, while current approaches usually fail to explore a huge portion of unknown HOI concepts (i.e., unknown but reasonable combinations of verbs and objects). In this paper, 1) we introduce a novel and challenging task for a comprehensive HOI understanding, which is termed as HOI Concept Discovery; and 2) we devise a self-compositional learning framework (or SCL) for HOI concept discovery. Specifically, we maintain an online updated concept confidence matrix during training: 1) we assign pseudo-labels for all composite HOI instances according to the concept confidence matrix for self-training; and 2) we update the concept confidence matrix using the predictions of all composite HOI instances. Therefore, the proposed method enables the learning on both known and unknown HOI concepts. We perform extensive experiments on several popular HOI datasets to demonstrate the effectiveness of the proposed method for HOI concept discovery, object affordance recognition and HOI detection. For example, the proposed self-compositional learning framework significantly improves the performance of 1) HOI concept discovery by over 10% on HICO-DET and over 3% on V-COCO, respectively; 2) object affordance recognition by over 9% mAP on MS-COCO and HICO-DET; and 3) rare-first and non-rare-first unknown HOI detection relatively over 30% and 20%, respectively. Code and models will be made publicly available at https://github.com/zhihou7/HOI-CL.Comment: Technical Repor

    Responsible Active Learning via Human-in-the-loop Peer Study

    Full text link
    Active learning has been proposed to reduce data annotation efforts by only manually labelling representative data samples for training. Meanwhile, recent active learning applications have benefited a lot from cloud computing services with not only sufficient computational resources but also crowdsourcing frameworks that include many humans in the active learning loop. However, previous active learning methods that always require passing large-scale unlabelled data to cloud may potentially raise significant data privacy issues. To mitigate such a risk, we propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability. Specifically, we first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side by maintaining an active learner (student) on the client-side. During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion. To further enhance the active learner via large-scale unlabelled data, we introduce multiple peer students into the active learner which is trained by a novel learning paradigm, including the In-Class Peer Study on labelled data and the Out-of-Class Peer Study on unlabelled data. Lastly, we devise a discrepancy-based active sampling criterion, Peer Study Feedback, that exploits the variability of peer students to select the most informative data to improve model stability. Extensive experiments demonstrate the superiority of the proposed PSL over a wide range of active learning methods in both standard and sensitive protection settings.Comment: 15 pages, 8 figure

    Deep Dictionary Learning with An Intra-class Constraint

    Full text link
    In recent years, deep dictionary learning (DDL)has attracted a great amount of attention due to its effectiveness for representation learning and visual recognition.~However, most existing methods focus on unsupervised deep dictionary learning, failing to further explore the category information.~To make full use of the category information of different samples, we propose a novel deep dictionary learning model with an intra-class constraint (DDLIC) for visual classification. Specifically, we design the intra-class compactness constraint on the intermediate representation at different levels to encourage the intra-class representations to be closer to each other, and eventually the learned representation becomes more discriminative.~Unlike the traditional DDL methods, during the classification stage, our DDLIC performs a layer-wise greedy optimization in a similar way to the training stage. Experimental results on four image datasets show that our method is superior to the state-of-the-art methods.Comment: 6 pages, 3 figures, 2 tables. It has been accepted in ICME202

    Knowledge-Aware Federated Active Learning with Non-IID Data

    Full text link
    Federated learning enables multiple decentralized clients to learn collaboratively without sharing the local training data. However, the expensive annotation cost to acquire data labels on local clients remains an obstacle in utilizing local data. In this paper, we propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget while protecting data privacy in a decentralized learning way. The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the asynchronous local clients. This becomes even more significant when data is distributed non-IID across local clients. To address the aforementioned challenge, we propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU). KSAS is a novel active sampling method tailored for the federated active learning problem. It deals with the mismatch challenge by sampling actively based on the discrepancies between local and global models. KSAS intensifies specialized knowledge in local clients, ensuring the sampled data to be informative for both the local clients and the global model. KCFU, in the meantime, deals with the client heterogeneity caused by limited data and non-IID data distributions. It compensates for each client's ability in weak classes by the assistance of the global model. Extensive experiments and analyses are conducted to show the superiority of KSAS over the state-of-the-art active learning methods and the efficiency of KCFU under the federated active learning framework.Comment: 14 pages, 12 figure

    Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach

    Full text link
    A generative model for high-fidelity point clouds is of great importance in synthesizing 3d environments for applications such as autonomous driving and robotics. Despite the recent success of deep generative models for 2d images, it is non-trivial to generate 3d point clouds without a comprehensive understanding of both local and global geometric structures. In this paper, we devise a new 3d point cloud generation framework using a divide-and-conquer approach, where the whole generation process can be divided into a set of patch-wise generation tasks. Specifically, all patch generators are based on learnable priors, which aim to capture the information of geometry primitives. We introduce point- and patch-wise transformers to enable the interactions between points and patches. Therefore, the proposed divide-and-conquer approach contributes to a new understanding of point cloud generation from the geometry constitution of 3d shapes. Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation, where it clearly outperforms recent state-of-the-art methods for high-fidelity point cloud generation
    • …
    corecore